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Abstract

An efficient finite-difference method for solving the heat transfer equation with piecewise discontinuous
coefficients in a multilayer domain is developed. The method may be considered as a generalization of the finite-
volumes method for the layered systems. We apply this method with the aim to reduce the 3D or 2D problem to the
corresponding series of 2D or 1D problems. In the case of constant piecewise coefficients, we obtain the exact
discrete approximation of the steady-state 1D boundary-value problem. © 2000 Elsevier Science Ltd. All rights

reserved.

1. Introduction

For the mathematical modelling of the heat transfer
process in multilayer materials special averaging pro-
cedures are considered [1,2]. A specific feature of such
problems is the necessity to solve the 3D or 2D initial-
boundary value problem for a parabolic type partial
differential equation with piecewise discontinuous coef-
ficients in the same thin layers. The averaging method
of solving these problems by means of quadratic poli-
nomials leads to a situation when boundary conditions
contain terms of higher order than the differential
equation. This causes additional difficulties for the ap-
plications of general difference methods. That is why it
is important to work out special methods of solution.

2. Formulation of the problem
We shall consider the process of heat transfer in a

3D cylindrical domain

E-mail address: kalis@fmf.lu.lv (H. Kalis).

D= {(x, Y, 2)i(x, p) € Q, HogngN},

where Q = {(x, y): — L <x<l, —l,<y<Il} is a rec-
tangle in the horizontal x-, y-directions with length of
edges 2/, 2l,, Hy — Hy is the height of the domain in
the vertical z-direction. Domain D consists of an N-
layer medium

Dy = {(Xa V2%, y)€Q Hep <z < Hk}

(1)
k=1,...,N,
with horizontal interfaces
Sk = {(x,y, Hk):(x,y)eQ} k=1,....N—1, ?2)

where Hj — Hj_; is the height of layer Dy.

We will find the distribution of temperature field uy
=ur(x, y, z, t) in every layer Dj at a point (x, y, z) €
D; and time ¢t > 0 by solving the partial differential
equation of the following form:

Prci(dui /ot + wigrad uy ) = div(xrgrad uk) + g,

k=1,...,N,
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where p;, ¢k, K are the coefficients of density, heat ca-
pacity and heat conductivity, respectively. g =qr(x, y,
z, 1) is the heat source function and wy is the given vel-
ocity vector with components (wy, w;, wy).

We assume that these components, as well as other
physical parameters in the equation are depending
only on Xx, y, ¢ and are piecewise continuous functions
of the vertical coordinate z with discontinuity points
on surface Sy.

We can consider a differential equation of the form

(AkOuy/02)/0z — exduy /02 + Li(ur) = —Fi(x, y, 2, 1),
3)

where Fi = qix/(prck) are continuously-differentiable
functions of external sources in every layer Dy, e, =
wi.

The differential operator L; we can write in the
form

Li(ur) = 0(Adui /x)/dx 4 3 (A 01y /0y) /0y
—dkauk/at—akauk/ax—bkauk/ay (4)

k=1,...,N,

where di = 1, ax = wi, by = w, 2k = x/(pyck).

Egs. (3) and (4) should be written for every layer Dy
having different properties of material. Temperature uy
and heat flux 4;0u;/9z must be continuous on the in-
terior boundary Sj. Therefore, we have the following
continuity conditions on this boundary

U = Uk+1,

5)
ikauk/az:2k+]8uk+|/az, k= l,...,N— 1. (

We assume that the whole N-layer system is bounded
from above and below by the plane surfaces Sy, Sn(2).
The boundary conditions on these surfaces may be
written as

VoA10u/9z — opup = —oigPo(x, ¥, 1), (6)

VlllNauN/aZ +oyuy = rxN<D1(x, ¥, Z), (7)

where (x,y) € Q, >0, vo =0 or vi{ =0 for the corre-
sponding Dirichlet boundary conditons: u; = @) or
uy = ®1; vo =1 or vi =1 for the corresponding Neu-
mann (g = 0 or ay = 0) or general form of boundary
conditions; op>0, ay>0 are the coefficients of heat
transfer, @, @, are the functions of external tempera-
ture.

Eqgs. (3) and (4) with conditions (5)—(7) along the z-
coordinate have been solved in the domain D with
different boundary conditions in the x-, y-directions at
x = #/.,y = £/, and with an initial condition at t =0

in the case of time depending problem. The form of
this condition are not essential for obtaining a numeri-
cal algorithm.

3. The finite-difference approximations

The approximation of differential problem is based
on the conservation law approach. Therefore, it devel-
ops the monotone difference scheme using a heat con-
servation law. This method is based on the application
of the method of finite volumes [3]. We consider a
nonuniform grid in the z-direction placed in the inter-
val (Ho, Hy) with blocks centered at the grid points z;,
j=1,....M, M>N (zo = Hy, zyy = Hy). We shall refer
to the endpoints of the interval about the point z; as
zj+o.5. This interval (zj_os, zj+0.5) is referred to a con-
trol volume associated with the grid point z; (the jth
cell). The grid contains z-coordinates H of surfaces
Sk, k=0,...,N and, in addition, some grid points in
layers Dy, k=1,...,N when this is necessary for
demonstrating the behaviour of the discrete solution in
these layers.

To derive a difference equation associated with grid
point z;, we integrate differential equation (3) to the jth
cell. For this purpose we apply the self-adjoint form of
Eq. (3) to the intervals (zj_1, z;), (zj, Zj41)-

We have

3(4 0u;/92) /92 = Gj, 2 € (z-1, 7)),

(A1 0u11/02) /02 = Gjy1, 2 € (2, Zj1), (®)

where )v/* = Jj/{j, Gj = —J/(F/ + Lj(uj )),
Ji = exp(=B(z — z;)/ 1), Jiy1 = exp(—=Bi1(z — z;)/ hj11),
By = (%) ey, hj=z;—zj_;. We define the heat flux
W=21"9u/dz, W;1o5 and the integrals

Z

Bf:f ) dzJ G, de,

j— Zj-0.5
where,
Wisos =Wl Zizos = (2 +2£1)/2.

We shall consider, from central grid point z;, the fol-
lowing four cases for applying the finite volumes
method: z; € Sk, k=1,....N=1; z;e D, k=1,...,N;
zieSyifvo=1and z; € Sy ifvi = L.

3.1 Let z;=H; be the central grid point and
zj_1, zj+1 the other grid points. We integrate Eq. (8)
from z;_os to zj105 and get

Z.

Zj+0.5
Wios — Wios = J Gy dz, )

Zj-0.5

doZ+J

“j

where G; = Gy, Gjy1 = Gi41. This is the integral form
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of the conservation law for the interval (zj_s, zjt0.5).
In the classical formulation for the finite volumes
method [3] it is assumed that the flux terms W45 in
Eq. (9) are approximate with the difference ex-
pressions. Then the corresponding difference scheme is
not exact for given functions G;. Here, we have the
possibility to make the exact dlfference scheme.

For this purpose we integrate Eq. (8) from z_o5 to
z € (zj-1, z;) and get,

W—W, 5= J G, dé.
Zj-0.5

After dividing this expression by A; and integrating
from z;_; to z; we obtain:

ur(Zj) = uk(Zj-1) = (4;7) “'Wi o5+ Bj,

where (4, )~ f’f ()~ 1dz_e‘l(l—exp( B)). ej=
ex, )»,_)% and uk(z,) uk(z, 1) represents the values of
function uy at z;, zj_;.

Hence

W o5 = A/.‘(uk(zj) — Uk(zj-1)) — Aj‘Bj. (10)

Similarly, determining the flux term W5 by integrat-
ing Eq. (8) in the intervals (zjy05, 2), z € (zj, zj41) and
(zj, zj+1) one obtains

Wivos = Af (w1 (Z1) — w1 (7)) — A5 B, (1)

where (A/H) ! =[2G D7 dz = e (=1 + exp(Biy).
€11 = Cpyl, Al = }Lkﬂ dnd ui1(2), uiy1(zj41) are the
values of function w4 at zj, zj;.

To derive a three-point difference equation associ-
ated with the central grid point z; = H; we have to
apply Eq. (9) in the form
Ay (Ui(z) — uk(zj-1)) = R;

(12)

A (U1 (Zi1) — W1 (2)) —

where,

Zj

Zj+0.5
Ry = A} By A;B_,-+J doz—i—J Gy dz.

Zj-0.5 zj

The integrals Bj, Biy1 can be modified by the partial
integral formula and the right side of Eq. (12) can be
rewritten as

o= [ (- [ o

+J (1 — A, ‘ (%)~ dﬁ) i1 dz. (13)

Zj vz

If g(s) =s(exp(s) — 1)~! is a real positive function
with  properties g(o0) =0, g(—o00)=o00, g(s)=

1 —5/2 + O(s?), then
A7 = ;“jhj_lg( - .Bj)s A;-:—l Ajp1h +|g(.3/+1)

and difference equation (12) has the form

/1,/+1h,-111g(/5,-+1 ) (k41 (Zj41) = Uk+1(Z)))

= 8= By) (@) — (1)) = Ry, (14)
where,
Bi=27"eils  Bii = 2eihia.

3.2 If zj € Dy, /’lj = hj+l, then ﬁj = ﬂj+l> g(-i_—ﬁ/) =
7(B))+B;/2 and difference equation (14) associated
with point z; has the form

2y (Bi) 02 (i )—exd-(ui),= b ' Ry, (15)

where 5_,2(\))]- = 1 — 20 + vi/hP, 6-(0); = (g1 —
vi_1)/(2h;) denotes central difference expressions of sec-
ond order and of first order for approximation of the
derivatives 82v/dz2, 9v/dz at the central grid point z;,
7(s) = 0.5s5 cth(0.5s) is the II’'yn perturbation coeflicient
for the monotone difference scheme [4].

3.3 Let there be z;j=zy=Hye Sy and vo=1. In
this case we apply the integral form of the conserva-
tion law to the half interval (zo, z¢.5), marked off to the
right of the boundary point z;. We get

20.5

Wos — Wy = J G dz, (16)

20

where Wy = W/|._,, Wos=W|._, .. Due to the Neu-

mann type boundary condition (6) at z = Hy, the flux
W, is known, i.e.

Wy = O(o(ul(Zo) - (DO)-

As before we integrate Eq. (8) from zgs to z € (zo, 1)
and from z; to z;, and we can easily derive the follow-
ing two-point difference equation associated with grid
point zo = Hy:

AT(M](Z])—L{](Z())) —O(o(u](Z())—@()) = Ry, (17)

where u(zp), uj(z1) represents the value of function u
at zo, z1,

Rozr<l A*J (A1)~ d5>Gl dz,

Af =) g(B).

34 If zj=Hy e Sy, vi =1, then similarly to the
above we integrate Eq. (8) from z;_o5 to z;. We get

By = ethy, A =Ji.
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Zj

WN — W,;()_s = J GN dz. (18)

Zj-05

As in Eq. (7) we have v;=1, the flux
Wy = —aj(uy(Hy) — @1), where uy(Hy) represents the
value of the function uy at z; = Hy. We now proceed
to determine the flux terms W;_os in Eq. (18) using
Eq. (8), by integration with respect to z from zj_gs to
z € (zj-1, Hy) and from z;_; to Hy. We obtain a two-
point difference equation associated with grid point
zj = Hy in the following form,

—oan(un(Hy) — @1) — Ay (un(Hy) — un(zj-1)) = Rw,
(19)

where uy(z;_1) represents the value of the function wuy
at z;_
j—15

Hy Hy )
RN:J 1—A}§J (%) "z |Gy dz.

zj-1

Ay = vt 'g(= By). By =2y enhn,

2%
Ay = JN;VN.

We see that difference equations (14), (15), (17) and
(19) are exact approximations for solving steady-state
one-dimensional boundary-value problem (3), (5)—(7)
depending only on z, (Li(ux) =0, [y = I, = 00).

4. One-dimensional exact difference scheme

Suppose that Li(up) =0, wr =wup(z), Fr = Fi(2),
Ai; @9; @1 are constants and the grid points are
zik = H, k=0,...,N. If vy = u(z;) is the value of func-
tion u; at the grid point z;, j=0,...,N, then evaluating
integral R; in the right side of Egs. (14), (17), and (19)
one obtains exact one-dimensional steady-state differ-
ence scheme

VoA (Va1 = vj) = 20(y = ®o) = voR;, j=0
AL =) — A7 =y =R, j=1,... N1
OCN(<D] — v_,-) — lej‘(v,- —Vj-1) = VIR, j=N

(20)

where 47 = /ljhj_lg(_ﬁj)a A;.—H = ;Lj+lhj:»11g(ﬁ[+l)v
B;i= (/lj)_le,«hj, j=0,...,N. For solving the boundary-
value problem with Dirichlet boundary condition (6)
(vo = 0) we have from the first difference equation of
(20) that vy = @y. Analogously, we can obtain from
the last difference equation of (20) that vy = &; in the
case vi = 0.

Difference scheme (20) for vy = vy = 1 can be rewrit-
ten as

A/-‘:_l(vj-%—l _Vj)_Aj_(Vj — Vj—l) = Rj j= 0,...,N, (21)

where,

Ay =920, AY =on=0, vy =P, vy =Py,
A].Jr+1 >0, Af >0,j=1,...,N.

Therefore, difference scheme (21) is monotone and has
a unique solution [4]. We can consider in addition new
grid points for approximation of functions u; in layers
Di. In the case of uniform grid, we use difference
equation (15). Finite-difference scheme (21) can be
solved by the factorisation method for the tri-diagonal
matrix (Thomas algorithm [3]).

5. Solution of one-dimensional problem

We can obtain a symmetric form of the matrix for
difference schemes (20) and (21) by multiplying the jth
equation with factor I;=exp(—II.,f;), (I'o=1).
Then, from T A =1 J'A/TH the finite-difference
scheme follows

A/+1(V/+1 — V,‘) — A/(V,’ — V/,l) = R/', ] =0,....N, (22)
where,

Aj = T4,

i+ j=0,....N—1, A():A(;:(Zo,

Any1 =y = Tyoy, Ry =TR;.

We can solve the difference scheme (22) also in a more
simple form. For this purpose from the first equation
of (22) we conclude that

af -
Ai(vi — o) —of (v — Do) = o Ro,
0

where (ozfr)fl =(09) " +(41) 7! is the inverse value of
the interaction coefficient of two layers. Furthermore,
from the second equation of (22) it follows:

Az(V2 —V)— Al(vl — V)= j’él.

Therefore,

Ay(va —vi) —of (n — o) = of RY,

where RT:Iél/aT + Ry /0.

Hence,
Am+l(Vm+l - Vm) - (xnt(vm - ¢0) = a;r;R;s (23)
where

-1 —1 _ _ _ _
() = (o)) +4, = @) +AT 4 4,
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R = R, /o + R /o
—_ R R/t P +
= Ro/og + Ry /oy + -+ R/,
m=1,....N—1.

From the last equation of (22) we obtain

_ AN_1 5
ay (@1 —vn-1) — ANV — VN-1) = g LRy,
N

where (ay_ ) "' =(@@y) "' + 45" is the inverse value of
the interaction coefficient of two layers in opposite
directions.

From Eq. (23) for m = N — 1 it follows

An(n — vn-1) — oy (vt — Do) = ay_ RY_ .
Hence,

oy (@1 — vn—1) — oy (hv-1 — Do) = Ry,
and,

- + +
oy Pr+oy  Po— Ry,

- T
Oy_p T %y

V-1 = , (24)

where Rﬁ_l =Rj_uf_, +aﬁ711§N/&N.
Similarly, it can be obtained that

. an®; + OCX,(DO — R%

&N-l—OC;

VN

where RY = Ry + i RY_,.

For the determination of flux function Wy, the last
equation of (22) and (24) yield

Wy = —ay(vy — ®1) = a(P) — &y + RY,), (25)

where (@) ' = (o) '+ (A1) T - (An) T HG) s
the inverse value of the common interaction coefficient
of the layers.

For Dirichlet boundary condition (vo =0 or v| = 0)
we can take o = 0o or oy = 00.

We can also consider the opposite direction. At j =
N and j = N —1 from Eq. (22) it follows:

Uy (@1 —vy-1) — An—1(VN=1 — VN=2) = Ry_ ty_1,
where Ry, :RN,l/a]§71 +RN/&N.
Therefore,
“]Gf,;(@l - Van) - Aan(Van - Vanfl) = R];,na];,na
(26)
where (ay_,) 7" = @)™+ (An) T+ Ay
Ry_,=Ryn-n/oy_,+ RN-nt1/0y_py1++ -+ Ry/on.

From the first equation of (22) and from Eq. (26) at
n = N — 1 it follows that

_ 0617451 +Otfr€p() — Rlir

27
o @

V1
where R =R oy 4o Ro/og.
The value of vy can be obtained in the form

_ OC(;(pl + gDy — R(;—r
oy + o

Yo

where R =Ro+Rj o .
For flux value Wy from Eq. (27) and first equation
of (22) we get the following expression

- ZM(@o—(D] +R(;).

From expressions (23) and (26) at m=k —1 and n =
N — k it follows

_a Dy 4o Do — R

> 28
P (28)

Vi

where R =R o +of R ;. k=1,....N—1.

6. Discrete approximation of first and second order

If Li(ux)#£0 and functions A, Fi, @y, ¢; depend on
other variables, then difference scheme (20) is not
exact (this is the case of 2D or 3D problems with
[y#00, [,#00). In such cases we can obtain the accu-
racy of order O(hc+hy+h.) or O(h}+h;+h?),
where /iy, hy, h. are the steps of an uniform grid in the
corresponding directions. We consider different ap-
proximations for right-side function R; in Egs. (14),
(15), (17) and (19).

6.1 To approximate R; from Eq. (13) on a nonuni-
form grid we consider the following Taylor series
expansions of function P, = —(Fj + Li(u)):

Pi(z) = Pu(z)) + (2 — Z)P(z) + O — z)°,

Z € (Zj-1, %))

Piy1(2) = Pry1(z) + (2 — Z.I')Pli'+1(zj) +0(¢z— Z_j)z,
ze (Zj, Zj+1)

where P, =0P;/0z, zj=Hj.
Then

Ry = hjvir(Bi1) Previ(2)) + hir( = B;) Pr(z))
+3(B1) P (z)hi — (= ) Pizhy
+00?), (29)

where
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h= max(h_,-, hj+1),
r(s)=s"(1—-g(s)) =0.5—5/12+ O(s?),
3(s) = s72(1 = (1 +0.59)g(s)) = 1/6 — 5/24 + O(s?).

In the 1D case Liu; =0, P, = —Fy, Pry1 = —Fjy this
expression is divided by average step T = (hj + hj1)/2.
We see that Eq. (29) approximates R; to the second
order in h. For the second order accuracy, also from
Eq. (29), it follows

Rj = Piy1(z)hj (0-5 - %)
B
n (PI('H(Z/')}ZJ%%—I - Plé(z.f)hf)

g +0(n?) (30)

For the first order accuracy we get

(Pk+1(zj)hj+l + Pk(zj)/”]')

R = 3 + 0(h?). (31)
Since
, Pri1(zjir1) — Pry1(z
Pry= s (.]+h)/+1 ) + O(h-fﬂ)’
Pi(z)) — Pr(zi—
py=ZCIZTED o),

hy
expressions (29) and (30) can be obtained in the form
Ry = i [Pt (201) + 2P (2)(1 = a1 /4)]/6

+ [ Pr(zio) + 2Pz (1 + Bi/4)]/6

+0(?). (32)
We see that expressions (29), (30) and (32) approxi-
mate R; to the second order in /;.

Evaluating Ry from Eq. (17) we see, using a Taylor
series expansion, that

Pi(z) = Pi(20) + (z — Z())P{(Z()) +0(z— 20)2,

z e (zo, 21),
so
Ry = Pi(z0)hir(By) + Pf(zo)hfs(ﬁl) +0(h}), (33)
or

Ro:%(P1(21)+2P1(Zo)(1—ﬁ1/4))+0(h?)' (34)

We see that expressions (33) and (34) approximate Ry
to the second order in A;.

Similarly, from Eq. (19), evaluating Ry we can show
that

Py(z) = Py(Hy) + (z — Hy)P \(Hy) + O(z — Hy)?,
z € (zj-1, Hy),
SO

Ry = Py(Hy)hyr(— fy) — P//V(HN)h}%IS( —By) +0(hy),
(35)

or

RN = h?N(PN(qu)-i- 2PN(HN))(1 =+ ﬁN/4) + 0(/’[}\/)
(36)

We see that expressions (35) and (36) approximate Ry
to the second order in /Ay.

The second order of accuracy in x-, y-directions can
be obtained by the central difference approximation
for the derivatives in expressions (32)—(36). If
a;#0, b;.#0 then the monotone difference schemes can
be consider [4,5].

7. Some examples

In the following examples we will discuss the appli-
cations of the finite-difference scheme (20) in 1D and
in 2D cases.

Example 1

We assume that the boundary-value problem of the
mathematical physics (3)—(7) for a two-layer system
(N =2) is a steady-state one (e, = 0), with the bound-
ary conditions at the side x = +/x, y = £/:

duy/dx = duy /oy = 0.
Let there be

H()IO, H1=6>0, H2:1, V():V]:O,

0(02062:1, F]Z—C_l7 F2=0, (15():(151:0.

Then difference scheme (20) with three grid points zy =
0,z =¢,z =1 has the solutions vy =v, =0, v; =
0.5(¢ — 1)¢/(eAr +(1 — €)4;), where the exact solution of
differential problem is at the point z = €.

Example 2

We assume, in addition, that through the lower surface
So the flux of u;(vo = 1) is given. Then from Eq. (20)
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there follows the system of two equations:

A1
?(VI — ) — %vo = Ry,

A2
1—c¢

A

v — —1(V1 —v) =Ry,
€

where

€
Ry=¢"! J (1—z/€)dz=0.5,
0

R =¢! J z/edz =0.5.
0

We obtain the exact values of the solution at the two
grid points zy = 0, z; = ¢ in the form:

vo = —((1 — )2 +0.5¢42) /p,
vi = 0.5(c — D(otge +221)/p,

where p = apA1(1 — €) + A2(A) +0ge).

Example 3

In addition we assume that e;#0, e; = 0. Then from
Eq. (20) there follows the system of two equations:

A
?18(31)("1 — ) — Vo = Ry,

A A
=~ ?g(—ﬂl)(vl —v) =Ry,

where Ry =r(f;), Ri =r(=p), B :el)hl_le. We obtain
exact values of the solution in the form

vo = —((1 — )i + A2 Ro) /p,
vi = (e — D(eweRy + 21p)/p.

where p = agdi(1 — g(—=p1) + 72(hig(B)) + %), p =
Rig(B1)+ Rog(—p).
If e; = 0 then we obtain the results of Example 2.

Example 4

We consider a 2D steady-state process with conditions
Que/0x|ymry, =0, wp = ug(y, z), br=0,
Fi = Fy(y,z), Ax = const

and with uniform grid in the y-direction with points
vi=-l,+ih,, i=0,...2N, (h,N, =1,). Then from
Eqgs. (30)—(36) the finite-difference scheme follows

volag(Br)(vi 1 = vi.0)/hf = o0 (vi.o = (@0);) /I
—|—v0(/11r(ﬂ1) +h|0€05(ﬁ]))53(v0),‘

= (F?i)l-

i=1,...2N, - 1;

Avij+ Ay = _(F.;‘k)/’

j=1...N—1li=1,.2N,—1;

s

oan((@1)i=vi, v)/hy = viZng( = By)(vi v — Vi, n—1)/hy
i (= ) + nd( = B) )0} 0w) = (F ),
i=1,... 2N, — 1, 37)

where

Vi, j = Ui(Vis Zj)s @)= Ply=y,

32(P)= (P =20 W),y ) /s P = Fys vjs bo @1,

(F5),= vo(5(8) )l 6 2(@0),~(FD(B1) = (F),3(81) )

(Fi)=w (S( = Br)anhno(@1)i—(FEn)r(— )

+ v (F )= B)).

(Fik) _ (Ff)ihj + (Fj+1)ihj+1
J /)i Zh’] ,

Aihi + A1

Ay = -
2h

53("}‘):"

neys’ by
Ay = (71;) (%g(ﬂm )(Vi,j+l —Vij)— ég( - ﬁ;)

X (Vi,j — Vi, /—1))’
hi/ = 0.5(/1j+/1j+1): FJ, =0F;/dz|.—,.

The five-point difference equations (37) for j=
I,...,N —1 have only the first order of accuracy in A;.
For the second order accuracy we need to apply nine-
point difference equations with
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Ay =Ty (ij+1 hj (3(13,-+1 )07 (V1)
(r(ﬁm) — (B ))55@')])
+ ity (3= B)o2 1),
(r(=8) =3(=8))530,))-

}ll/ l(hﬁ—l( ﬂ_}+l /+1)

+ (r(Br) - wMD( 2)

+h/( (= B)(E-),
+(r(—8) - 3(- mn( )
where F* = Fjl._.,,,.

Ifex=0theng=1,8=1/6,r=0.5.
If bi#0 then for monotone finite-difference scheme
(37) the expression ijéf(p) is in the form

1405 (P) = bidy(p),

where y, =0.5b;h, / 2;cth(0.5b;h, /7).

Example 5

We assume, in addition, that wu = wui(x,y, 2),
ax#0, b#0. Then for the monotone finite-difference
scheme (37) the expression ijb‘f(p) is in the form

DA03(P) = adx(p) + 7,440 (P) = bidy(p)-
where y,=0.5a;h,/Aicth(0.5a;h. [/ A;).

Example 6

For solving the time-depending problem with
ug = up(z, 1), =40, Fie=Fi(z, 0, di =d(1),
ar = b =0, vo =v; =1 the difference equations can
be written in the form of (21), where

Ry = —/’11<F1I‘(ﬁ1) +/’11F{S(ﬁl)> + d, ((r(ﬁl)
+a0111(~3([31)//11>\31 —OCOhléOS(ﬁl)/;“l)’
Ry = —hN(FNV(—ﬁN) _hNFJ/vS(_ﬁN))

+ /’lNdN(<i‘( - :BN) + CXN/’INS( - ‘BN)//LN)VN
- O(NhNdeS( - ﬂN)/iN),

R; = —(Fihj + Firihi1) /2 + 0.5(dihy + diihig)vy,  (38)

V= 0vi/0tl.—y Dy = 3D, /0t, m=0;1.

The five-point difference equations for j=1,. -1
have only the first order of accuracy in /;. For the sec-
ond order accuracy we need to apply nine-point differ-
ence equations with

Ry= = Fihy+ dithyr (3(Be1) (1)
+ ("(ﬁm) - 5(51‘“))( )) + dhf( (=B)01)
+(r(= )= 3(=8)) (). (39)

In the case of analytical integration, we can determine
function F; in the right side from Egs. (13), (17) and
(19). If the grid is uniform, then difference expressions
(37)—(39) may be simplifed. We can obtain the system
of differential equations (20), (38), (39), where can be
solved with initial conditions at ¢t =0 (the so-called
method of lines).
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