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Abstract

An e�cient ®nite-di�erence method for solving the heat transfer equation with piecewise discontinuous
coe�cients in a multilayer domain is developed. The method may be considered as a generalization of the ®nite-

volumes method for the layered systems. We apply this method with the aim to reduce the 3D or 2D problem to the
corresponding series of 2D or 1D problems. In the case of constant piecewise coe�cients, we obtain the exact
discrete approximation of the steady-state 1D boundary-value problem. 7 2000 Elsevier Science Ltd. All rights

reserved.

1. Introduction

For the mathematical modelling of the heat transfer

process in multilayer materials special averaging pro-
cedures are considered [1,2]. A speci®c feature of such
problems is the necessity to solve the 3D or 2D initial-

boundary value problem for a parabolic type partial
di�erential equation with piecewise discontinuous coef-
®cients in the same thin layers. The averaging method

of solving these problems by means of quadratic poli-
nomials leads to a situation when boundary conditions
contain terms of higher order than the di�erential
equation. This causes additional di�culties for the ap-

plications of general di�erence methods. That is why it
is important to work out special methods of solution.

2. Formulation of the problem

We shall consider the process of heat transfer in a
3D cylindrical domain

D � ��x, y, z�:�x, y� 2 O, H0RzRHN

	
,

where O � f�x; y�:ÿ lxRxRlx, ÿlyRyRlyg is a rec-
tangle in the horizontal x-, y-directions with length of
edges 2lx, 2ly, HN ÿH0 is the height of the domain in
the vertical z-direction. Domain D consists of an N-

layer medium

Dk �
��x, y, z�:�x, y� 2 O, Hkÿ1 < z < Hk

	
k � 1, . . . ,N,

�1�

with horizontal interfaces

Sk �
��x, y, Hk �:�x, y� 2 O

	
k � 1, . . . ,Nÿ 1, �2�

where Hk ÿHkÿ1 is the height of layer Dk:
We will ®nd the distribution of temperature ®eld uk
� uk�x, y, z, t� in every layer Dk at a point �x, y, z� 2
Dk and time t > 0 by solving the partial di�erential

equation of the following form:

rkck�@uk=@ t� wkgrad uk � � div�kkgrad uk � � qk,

k � 1, . . . ,N,
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where rk, ck, kk are the coe�cients of density, heat ca-
pacity and heat conductivity, respectively. qk� qk�x, y,
z, t� is the heat source function and wk is the given vel-
ocity vector with components �wx

k, w
y
k , w

z
k�:

We assume that these components, as well as other

physical parameters in the equation are depending
only on x, y, t and are piecewise continuous functions
of the vertical coordinate z with discontinuity points

on surface Sk:
We can consider a di�erential equation of the form

@ �lk@uk=@z�=@zÿ ek@uk=@z� Lk�uk � � ÿFk�x, y, z, t�,
�3�

where Fk � qk=�rkck� are continuously-di�erentiable
functions of external sources in every layer Dk, ek �
wz
k:
The di�erential operator Lk we can write in the

form

Lk�uk � � @ �lk@uk=@x�=@x� @ �lk@uk=@y�=@y

ÿ dk@uk=@ tÿ ak@uk=@xÿ bk@uk=@y

k � 1, . . . ,N,

�4�

where dk � 1, ak � wx
k, bk � w

y
k , lk � k=�rkck�:

Eqs. (3) and (4) should be written for every layer Dk

having di�erent properties of material. Temperature uk
and heat ¯ux lk@uk=@z must be continuous on the in-
terior boundary Sk: Therefore, we have the following
continuity conditions on this boundary

uk � uk�1,

lk@uk=@z � lk�1@uk�1=@z, k � 1, . . . ,Nÿ 1:
�5�

We assume that the whole N-layer system is bounded

from above and below by the plane surfaces S0, SN�2�:
The boundary conditions on these surfaces may be
written as

n0l1@u1=@zÿ a0u1 � ÿa0F0�x, y, t�, �6�

n1lN@uN=@z� aNuN � aNF1�x, y, t�, �7�

where �x, y� 2 O, tr0, n0 � 0 or n1 � 0 for the corre-
sponding Dirichlet boundary conditons: u1 � F0 or

uN � F1; n0 � 1 or n1 � 1 for the corresponding Neu-
mann �a0 � 0 or aN � 0� or general form of boundary
conditions; a0r0, aNr0 are the coe�cients of heat

transfer, F0, F1 are the functions of external tempera-
ture.
Eqs. (3) and (4) with conditions (5)±(7) along the z-

coordinate have been solved in the domain D with
di�erent boundary conditions in the x-, y-directions at
x �2lx, y �2ly and with an initial condition at t � 0

in the case of time depending problem. The form of
this condition are not essential for obtaining a numeri-

cal algorithm.

3. The ®nite-di�erence approximations

The approximation of di�erential problem is based
on the conservation law approach. Therefore, it devel-
ops the monotone di�erence scheme using a heat con-

servation law. This method is based on the application
of the method of ®nite volumes [3]. We consider a
nonuniform grid in the z-direction placed in the inter-
val �H0, HN� with blocks centered at the grid points zj,

j � 1, . . . ,M, MrN �z0 � H0, zM � HN�: We shall refer
to the endpoints of the interval about the point zj as
zj20:5: This interval �zjÿ0:5, zj�0:5� is referred to a con-

trol volume associated with the grid point zj (the jth
cell). The grid contains z-coordinates Hk of surfaces
Sk, k � 0, . . . ,N and, in addition, some grid points in

layers Dk, k � 1, . . . ,N when this is necessary for
demonstrating the behaviour of the discrete solution in
these layers.

To derive a di�erence equation associated with grid
point zj, we integrate di�erential equation (3) to the jth
cell. For this purpose we apply the self-adjoint form of
Eq. (3) to the intervals �zjÿ1, zj �, �zj, zj�1�:
We have

@
ÿ
l�j @uj=@z

�
=@z � Gj, z 2 �zjÿ1, zj �,

@
ÿ
l�j�1@uj�1=@z

�
=@z � Gj�1, z 2 �zj, zj�1 �, �8�

where l�j � Jjlj, Gj � ÿJj�Fj � Lj�uj ��,
Jj � exp�ÿbj�zÿ zj �=hj �, Jj�1 � exp�ÿbj�1�zÿ zj �=hj�1�,
bj � �lj �ÿ1ejhj, hj � zj ÿ zjÿ1: We de®ne the heat ¯ux

W�l�@u=@z, Wj20:5 and the integrals

Bj �
�zj
zjÿ1

ÿ
l�j
�ÿ1

dz

�z
zjÿ0:5

Gj dx,

where,

Wj20:5 �Wjz�zj20:5
, zj20:5 � �zj � zj21 �=2:

We shall consider, from central grid point zj, the fol-
lowing four cases for applying the ®nite volumes

method: zj 2 Sk, k � 1, . . . ,Nÿ 1; zj 2 Dk, k � 1, . . . ,N;
zj 2 S0 if n0 � 1 and zj 2 SN if n1 � 1:
3.1 Let zj � Hk be the central grid point and

zjÿ1, zj�1 the other grid points. We integrate Eq. (8)
from zjÿ0:5 to zj�0:5 and get

Wj�0:5 ÿWjÿ0:5 �
�zj
zjÿ0:5

Gj dz�
�zj�0:5
zj

Gj�1 dz, �9�

where Gj � Gk, Gj�1 � Gk�1: This is the integral form
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of the conservation law for the interval �zjÿ0:5, zj�0:5�:
In the classical formulation for the ®nite volumes

method [3] it is assumed that the ¯ux terms Wj20:5 in
Eq. (9) are approximate with the di�erence ex-
pressions. Then the corresponding di�erence scheme is

not exact for given functions Gj: Here, we have the
possibility to make the exact di�erence scheme.
For this purpose we integrate Eq. (8) from zjÿ0:5 to

z 2 �zjÿ1, zj � and get,

WÿWjÿ0:5 �
�z
zjÿ0:5

Gj dx:

After dividing this expression by l�k and integrating

from zjÿ1 to zj we obtain:

uk�zj � ÿ uk�zjÿ1 � � ÿAÿj �ÿ1Wjÿ0:5 � Bj,

where �Aÿj �ÿ1�
� zj
zjÿ1
�l�j �ÿ1 dz � eÿ1j �1ÿ exp�ÿbj ��, ej�

ek, lj � lk and uk�zj �, uk�zjÿ1� represents the values of
function uk at zj, zjÿ1:
Hence

Wjÿ0:5 � Aÿj �uk�zj � ÿ uk�zjÿ1 �� ÿ Aÿj Bj: �10�

Similarly, determining the ¯ux term Wj�0:5 by integrat-
ing Eq. (8) in the intervals �zj�0:5, z�, z 2 �zj, zj�1� and
�zj, zj�1� one obtains

Wj�0:5 � A�j�1�uk�1�zj�1 � ÿ uk�1�zj �� ÿ A�j�1Bj�1, �11�

where �A�j�1�ÿ1 �
� zj�1
zj
�l�j�1�ÿ1 dz � eÿ1j�1�ÿ1� exp�bj�1��,

ej�1 � ek�1, lj�1 � lk�1 and uk�1�zj �, uk�1�zj�1� are the
values of function uk�1 at zj, zj�1:
To derive a three-point di�erence equation associ-

ated with the central grid point zj � Hk we have to
apply Eq. (9) in the form

A�j�1�uk�1�zj�1 � ÿ uk�1�zj �� ÿ Aÿj �uk�zj � ÿ uk�zjÿ1 �� � Rj,

�12�
where,

Rj � A�j�1Bj�1 ÿ Aÿj Bj �
�zj
zjÿ0:5

Gj dz�
�zj�0:5
zj

Gj�1 dz:

The integrals Bj, Bj�1 can be modi®ed by the partial
integral formula and the right side of Eq. (12) can be
rewritten as

Rj �
�zj
zjÿ1

�
1ÿ Aÿj

�zj
z

ÿ
l�j
�ÿ1

dx
�
Gj dz

�
�zj�1
zj

 
1ÿ A�j�1

�z
zj

ÿ
l�j�1

�ÿ1
dx

!
Gj�1 dz: �13�

If g�s� � s�exp�s� ÿ 1�ÿ1 is a real positive function
with properties g�1� � 0, g�ÿ1� � 1, g�s� �

1ÿ s=2�O�s 2�, then

Aÿj � ljhÿ1j g
ÿÿ bj

�
, A�j�1 � lj�1hÿ1j�1g

ÿ
bj�1

�
and di�erence equation (12) has the form

lj�1hÿ1j�1g
ÿ
bj�1

�
�uk�1�zj�1 � ÿ uk�1�zj ��

ÿ ljhÿ1j g
ÿÿ bj

�
�uk�zj � ÿ uk�zjÿ1 �� � Rj, �14�

where,

bj � lÿ1j ejhj, bj�1 � lÿ1j�1ej�1hj�1:

3.2 If zj 2 Dk, hj � hj�1, then bj � bj�1, g�2bj � �
g�bj �2bj=2 and di�erence equation (14) associated

with point zj has the form

lkg
ÿ
bk
�
d 2
z �uk �jÿekdz�uk �j� hÿ1j Rj, �15�

where d 2
z �v�j � �vj�1 ÿ 2vj � vjÿ1�=h 2

j , dz�v�j � �vj�1 ÿ
vjÿ1�=�2hj � denotes central di�erence expressions of sec-

ond order and of ®rst order for approximation of the
derivatives @ 2v=@z 2, @v=@z at the central grid point zj,
g�s� � 0:5s cth�0:5s� is the Il'yn perturbation coe�cient

for the monotone di�erence scheme [4].
3.3 Let there be zj � z0 � H0 2 S0 and n0 � 1: In

this case we apply the integral form of the conserva-

tion law to the half interval �z0, z0:5�, marked o� to the
right of the boundary point z0: We get

W0:5 ÿW0 �
�z0:5
z0

G1 dz, �16�

where W0 �Wjz�z0 , W0:5 �Wjz�z0:5 : Due to the Neu-
mann type boundary condition (6) at z � H0, the ¯ux

W0 is known, i.e.

W0 � a0
ÿ
u1�z0 � ÿ F0

�
:

As before we integrate Eq. (8) from z0:5 to z 2 �z0, z1�
and from z0 to z1, and we can easily derive the follow-
ing two-point di�erence equation associated with grid

point z0 � H0:

A�1
ÿ
u1�z1 � ÿ u1�z0 ��ÿ a0

ÿ
u1�z0 � ÿ F0

� � R0, �17�

where u1�z0�, u1�z1� represents the value of function u1
at z0, z1,

R0 �
�z1
z0

 
1ÿ A�1

�z
z0

ÿ
l�1
�ÿ1

dx

!
G1 dz,

A�1 � l1�h1 �ÿ1g
ÿ
b1
�
, b1 � lÿ11 e1h1, l�1 � J1l1:

3.4 If zj � HN 2 SN, n1 � 1, then similarly to the
above we integrate Eq. (8) from zjÿ0:5 to zj: We get
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WN ÿWjÿ0:5 �
�zj
zjÿ0:5

GN dz: �18�

As in Eq. (7) we have n1 � 1, the ¯ux

WN � ÿa1�uN�HN� ÿ F1�, where uN�HN� represents the
value of the function uN at zj � HN: We now proceed
to determine the ¯ux terms Wjÿ0:5 in Eq. (18) using

Eq. (8), by integration with respect to z from zjÿ0:5 to
z 2 �zjÿ1, HN� and from zjÿ1 to HN: We obtain a two-
point di�erence equation associated with grid point

zj � HN in the following form,

ÿaN�uN�HN � ÿ F1 � ÿ AÿN
ÿ
uN�HN � ÿ uN�zjÿ1 �

� � RN,

�19�
where uN�zjÿ1� represents the value of the function uN
at zjÿ1,

RN �
�HN

zjÿ1

 
1ÿ AÿN

�HN

z

ÿ
l�N
�ÿ1

dx

!
GN dz,

AÿN � lN�hN �ÿ1g
ÿÿ bN

�
, bN � lÿ1N eNhN,

l�N � JNlN:

We see that di�erence equations (14), (15), (17) and
(19) are exact approximations for solving steady-state
one-dimensional boundary-value problem (3), (5)±(7)

depending only on z, �Lk�uk� � 0, lx � ly � 1�:

4. One-dimensional exact di�erence scheme

Suppose that Lk�uk� � 0, uk � uk�z�, Fk � Fk�z�,
lk; F0; F1 are constants and the grid points are
zk � Hk, k � 0, . . . ,N: If vj � uj�zj � is the value of func-

tion uj at the grid point zj, j � 0, . . . ,N, then evaluating
integral Rj in the right side of Eqs. (14), (17), and (19)
one obtains exact one-dimensional steady-state di�er-

ence scheme

n0A�j�1�vj�1 ÿ vj � ÿ a0
ÿ
vj ÿ F0

� � n0Rj, j � 0

A�j�1�vj�1 ÿ vj � ÿ Aÿj �vj ÿ vjÿ1 � � Rj, j � 1, . . . ,Nÿ 1

aN
ÿ
F1 ÿ vj

�ÿ n1Aÿj �vj ÿ vjÿ1 � � n1Rj, j � N

�20�
where Aÿj � ljhÿ1j g�ÿbj �, A�j�1 � lj�1hÿ1j�1g�bj�1�,
bj � �lj �ÿ1ejhj, j � 0, . . . ,N: For solving the boundary-
value problem with Dirichlet boundary condition (6)

�n0 � 0� we have from the ®rst di�erence equation of
(20) that v0 � F0: Analogously, we can obtain from
the last di�erence equation of (20) that vN � F1 in the

case n1 � 0:
Di�erence scheme (20) for n0 � n1 � 1 can be rewrit-

ten as

A�j�1�vj�1ÿvj �ÿAÿj �vj ÿ vjÿ1 � � Rj, j � 0, . . . ,N, �21�

where,

Aÿ0 � a0r0, A�N�1 � aNr0, vÿ1 � F0, vN�1 � F1,

A�j�1 > 0, Aÿj > 0, j � 1, . . . ,N:

Therefore, di�erence scheme (21) is monotone and has
a unique solution [4]. We can consider in addition new
grid points for approximation of functions uk in layers

Dk: In the case of uniform grid, we use di�erence
equation (15). Finite-di�erence scheme (21) can be
solved by the factorisation method for the tri-diagonal

matrix (Thomas algorithm [3]).

5. Solution of one-dimensional problem

We can obtain a symmetric form of the matrix for

di�erence schemes (20) and (21) by multiplying the jth
equation with factor Gj � exp�ÿP j

i�1bi �, �G0 � 1�:
Then, from Gj�1Aÿj�1 � GjA

�
j�1 the ®nite-di�erence

scheme follows

Aj�1�vj�1 ÿ vj � ÿ Aj�vj ÿ vjÿ1 � � ~Rj, j � 0, . . . ,N, �22�

where,

Aj�1 � GjA
�
j�1, j � 0, . . . ,Nÿ 1, A0 � Aÿ0 � a0,

AN�1 � ~aN � GNaN, ~Rj � GjRj:

We can solve the di�erence scheme (22) also in a more
simple form. For this purpose from the ®rst equation
of (22) we conclude that

A1�v1 ÿ v0 � ÿ a�1 �v1 ÿ F0 � � a�1
a0

~R0,

where �a�1 �ÿ1 � �a0�ÿ1 � �A1�ÿ1 is the inverse value of
the interaction coe�cient of two layers. Furthermore,
from the second equation of (22) it follows:

A2�v2 ÿ v1 � ÿ A1�v1 ÿ v0 � � ~R1:

Therefore,

A2�v2 ÿ v1 � ÿ a�1 �v1 ÿ F0 � � a�1 R
�
1 ,

where R�1 � ~R1=a�1 � ~R0=a0:
Hence,

Am�1�vm�1 ÿ vm � ÿ a�m�vm ÿ F0 � � a�mR
�
m, �23�

whereÿ
a�m
�ÿ1� ÿa�mÿ1�ÿ1�Aÿ1m � �a0 �ÿ1�Aÿ11 � � � � � Aÿ1m ,
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R�m � ~Rm=a�m � R�mÿ1=a
�
mÿ1

� ~R0=a0 � ~R1=a�1 � � � � � ~Rm=a�m

m � 1, . . . ,Nÿ 1:

From the last equation of (22) we obtain

aÿNÿ1�F1 ÿ vNÿ1 � ÿ AN�vN ÿ vNÿ1 � � aÿNÿ1
~aN

~RN,

where �aÿNÿ1�ÿ1 � �~aN�ÿ1 � Aÿ1N is the inverse value of
the interaction coe�cient of two layers in opposite
directions.

From Eq. (23) for m � Nÿ 1 it follows

AN�vN ÿ vNÿ1 � ÿ a�Nÿ1�vNÿ1 ÿ F0 � � a�Nÿ1R
�
Nÿ1:

Hence,

aÿNÿ1�F1 ÿ vNÿ1 � ÿ a�Nÿ1�vNÿ1 ÿ F0 � � R2
Nÿ1

and,

vNÿ1 � aÿNÿ1F1 � a�Nÿ1F0 ÿ R2
Nÿ1

aÿNÿ1 � a�Nÿ1
, �24�

where R2
Nÿ1�R�Nÿ1a�Nÿ1�aÿNÿ1 ~RN=~aN:

Similarly, it can be obtained that

vN � ~aNF1 � a�NF0 ÿ R2
N

~aN � a�N
,

where R2
N � ~RN � a�NR

�
Nÿ1:

For the determination of ¯ux function WN, the last
equation of (22) and (24) yield

WN � ÿaN�vN ÿ F1 � � a
ÿ
F1 ÿ F0 � R�N

�
, �25�

where �a�ÿ1��a0�ÿ1��A1�ÿ1�� � � � �AN�ÿ1��~aN�ÿ1 is
the inverse value of the common interaction coe�cient
of the layers.

For Dirichlet boundary condition �n0 � 0 or n1 � 0�
we can take a0 � 1 or ~aN � 1:
We can also consider the opposite direction. At j �

N and j � Nÿ 1 from Eq. (22) it follows:

aÿNÿ1�F1 ÿ vNÿ1 � ÿ ANÿ1�vNÿ1 ÿ vNÿ2 � � RÿNÿ1a
ÿ
Nÿ1,

where RÿNÿ1� ~RNÿ1=aÿNÿ1� ~RN=~aN:
Therefore,

aÿNÿn�F1 ÿ vNÿn � ÿ ANÿn�vNÿn ÿ vNÿnÿ1 � � RÿNÿna
ÿ
Nÿn,

�26�
where �aÿNÿn�ÿ1 � �~aN�ÿ1 � �AN�ÿ1 � � � � � �ANÿn�1�ÿ1,
RÿNÿn� ~RNÿn=aÿNÿn� ~RNÿn�1=aÿNÿn�1�� � � � ~RN=~aN:
From the ®rst equation of (22) and from Eq. (26) at

n � Nÿ 1 it follows that

v1 � aÿ1 F1 � a�1 F0 ÿ R2
1

aÿ1 � a�1
, �27�

where R2
1 �Rÿ1 aÿ1 �a�1 ~R0=a0:

The value of v0 can be obtained in the form

v0 � aÿ0 F1 � a0F0 ÿ R2
0

aÿ0 � a0
,

where R2
0 � ~R0�Rÿ1 aÿ0 :

For ¯ux value W0 from Eq. (27) and ®rst equation

of (22) we get the following expression

ÿW0 � a
ÿ
F0 ÿ F1 � Rÿ0

�
:

From expressions (23) and (26) at m � kÿ 1 and n �
Nÿ k it follows

vk � aÿk F1 � a�k F0 ÿ R2
k

aÿk � a�k
, �28�

where R2
k �Rÿk aÿk �a�k R�kÿ1, k � 1, . . . ,Nÿ 1:

6. Discrete approximation of ®rst and second order

If Lk�uk�6�0 and functions l, Fk, F0, F1 depend on
other variables, then di�erence scheme (20) is not
exact (this is the case of 2D or 3D problems with
lx 6�1, ly 6�1). In such cases we can obtain the accu-

racy of order O�hx � hy � hz� or O�h 2
x � h 2

y � h 2
z �,

where hx, hy, hz are the steps of an uniform grid in the
corresponding directions. We consider di�erent ap-

proximations for right-side function Rj in Eqs. (14),
(15), (17) and (19).
6.1 To approximate Rj from Eq. (13) on a nonuni-

form grid we consider the following Taylor series
expansions of function Pk � ÿ�Fk � Lk�uk��:

Pk�z� � Pk�zj � � �zÿ zj �P 0k�zj � �O�zÿ zj � 2,
z 2 �zjÿ1, zj �

Pk�1�z� � Pk�1�zj � � �zÿ zj �P 0k�1�zj � �O�zÿ zj � 2,
z 2 �zj, zj�1 �

where P 0k�@Pk=@z, zj�Hk:
Then

Rj � hj�1r
ÿ
bj�1

�
Pk�1�zj � � hjr

ÿÿ bj
�
Pk�zj �

� ~d
ÿ
bj�1

�
P 0k�1�zj �h 2

j�1 ÿ ~d
ÿÿ bj

�
P 0k�zj �h 2

j

�O�h3 �, �29�

where
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h � max
ÿ
hj, hj�1

�
,

r�s� � sÿ1
ÿ
1ÿ g�s�� � 0:5ÿ s=12�O�s 2 �,

~d�s� � sÿ2
ÿ
1ÿ �1� 0:5s�g�s�� � 1=6ÿ s=24�O�s 2 �:

In the 1D case Lkuk � 0, Pk � ÿFk, Pk�1 � ÿFk�1 this

expression is divided by average step h
zxl � �hj � hj�1�=2:

We see that Eq. (29) approximates Rj to the second
order in h. For the second order accuracy, also from

Eq. (29), it follows

Rj � Pk�1�zj �hj�1
�
0:5ÿ bj�1

12

�
� Pk�zj �hj�

�
0:5� bj

12

�

�
�
P 0k�1�zj �h 2

j�1 ÿ P 0k�zj �h 2
j

�
6

�O�h3 � �30�

For the ®rst order accuracy we get

Rj �
ÿ
Pk�1�zj �hj�1 � Pk�zj �hj

�
2

�O�h 2 �: �31�

Since

P 0k�1 �
Pk�1�zj�1 � ÿ Pk�1�zj �

hj�1
�O

ÿ
hj�1

�
,

P 0k �
Pk�zj � ÿ Pk�zjÿ1 �

hj
�O

ÿ
hj
�
,

expressions (29) and (30) can be obtained in the form

Rj � hj�1
�
Pk�1�zj�1 � � 2Pk�1�zj �

ÿ
1ÿ bj�1=4

��
=6

� hj
�
Pk�zjÿ1 � � 2Pk�zj �

ÿ
1� bj=4

��
=6

�O�h3 �: �32�

We see that expressions (29), (30) and (32) approxi-
mate Rj to the second order in hj:
Evaluating R0 from Eq. (17) we see, using a Taylor

series expansion, that

P1�z� � P1�z0 � � �zÿ z0 �P 01�z0 � �O�zÿ z0 � 2,
z 2 �z0, z1 �,

so

R0 � P1�z0 �h1r
ÿ
b1
�� P 01�z0 �h 2

1
~d
ÿ
b1
��O

ÿ
h31
�
, �33�

or

R0 � h1
6

ÿ
P1�z1 � � 2P1�z0 �

ÿ
1ÿ b1=4

���O
ÿ
h31
�
: �34�

We see that expressions (33) and (34) approximate R0

to the second order in h1:
Similarly, from Eq. (19), evaluating RN we can show

that

PN�z� � PN�HN � � �zÿHN �P 0N�HN � �O�zÿHN � 2,

z 2 ÿzjÿ1, HN

�
,

so

RN � PN�HN �hNr
ÿÿ bN

�ÿ P 0N�HN �h 2
N

~d
ÿÿ bN

��O
ÿ
h3N
�
,

�35�
or

RN � hN
6

ÿ
PN�zjÿ1 � � 2PN�HN �

�ÿ
1� bN=4

��O
ÿ
h3N
�
:

�36�
We see that expressions (35) and (36) approximate RN

to the second order in hN:
The second order of accuracy in x-, y-directions can

be obtained by the central di�erence approximation
for the derivatives in expressions (32)±(36). If
ak 6�0, bk 6�0 then the monotone di�erence schemes can

be consider [4,5].

7. Some examples

In the following examples we will discuss the appli-

cations of the ®nite-di�erence scheme (20) in 1D and
in 2D cases.

Example 1
We assume that the boundary-value problem of the

mathematical physics (3)±(7) for a two-layer system
�N � 2� is a steady-state one �ek � 0�, with the bound-
ary conditions at the side x �2lk, y �2ly:

@uk=@x � @uk=@y � 0:

Let there be

H0 � 0, H1 � E > 0, H2 � 1, n0 � n1 � 0,

a0 � a2 � 1, F1 � ÿEÿ1, F2 � 0, F0 � F1 � 0:

Then di�erence scheme (20) with three grid points z0 �
0, z1 � E, z2 � 1 has the solutions v0 � v2 � 0, v1 �
0:5�Eÿ 1�E=�El2��1ÿ E�l1�, where the exact solution of

di�erential problem is at the point z � E:

Example 2

We assume, in addition, that through the lower surface
S0 the ¯ux of u1�n0 � 1� is given. Then from Eq. (20)
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there follows the system of two equations:

l1
E �v1 ÿ v0 � ÿ a0v0 � R0,

ÿ l2
1ÿ E

v1 ÿ l1
E �v1 ÿ v0 � � R1,

where

R0 � Eÿ1
�E
0

�1ÿ z=E� dz � 0:5,

R1 � Eÿ1
�E
0

z=E dz � 0:5:

We obtain the exact values of the solution at the two

grid points z0 � 0, z1 � E in the form:

v0 � ÿ
ÿ�1ÿ E�l1 � 0:5El2

�
=p,

v1 � 0:5�Eÿ 1��a0E� 2l1 �=p,

where p � a0l1�1ÿ E� � l2�l1�a0E�:
Example 3

In addition we assume that e1 6�0, e2 � 0: Then from
Eq. (20) there follows the system of two equations:

l1
E
g
ÿ
b1
�
�v1 ÿ v0 � ÿ a0v0 � R0,

ÿ l2
1ÿ E

v1 ÿ l1
E
g
ÿÿ b1

�
�v1 ÿ v0 � � R1,

where R0 � r�b1�, R1 � r�ÿb1�, b1 � e1l
ÿ1
1 E: We obtain

exact values of the solution in the form

v0 � ÿ
ÿ�1ÿ E�l1 ~p� El2R0

�
=p,

v1 � �Eÿ 1�ÿa0ER1 � l1 ~p
�
=p,

where p � a0l1�1ÿ E�g�ÿb1� � l2�l1g�b1� � a0E�, ~p �
R1g�b1��R0g�ÿb1�:
If e1 � 0 then we obtain the results of Example 2.

Example 4

We consider a 2D steady-state process with conditions

@uk=@xjx�2lx � 0, uk � uk�y, z�, bk � 0,

Fk � Fk�y, z�, lk � const

and with uniform grid in the y-direction with points
yi � ÿly � ihy, i � 0, . . . ,2Ny �hyNy � ly�: Then from
Eqs. (30)±(36) the ®nite-di�erence scheme follows

n0l1g
ÿ
b1
�
�vi, 1 ÿ vi, 0 �=h 2

1 ÿ a0
ÿ
vi, 0 ÿ �F0 �i

�
=h1

� n0
�
l1r
ÿ
b1
�� h1a0 ~d

ÿ
b1
��
d 2
y �v0 �i

� ÿF �0 �i
i � 1, . . . ,2Ny ÿ 1;

Lzvi, j � Lyvi, j � ÿÿF �j �i,
j � 1, . . . ,Nÿ 1, i � 1, . . . ,2Ny ÿ 1;

aN
ÿ�F1 �iÿvi, N

�
=hN ÿ n1lNg

ÿÿ bN
�
�vi, N ÿ vi, Nÿ1 �=h 2

N

� n1
�
lNr

ÿÿ bN
�� hNa1 ~d

ÿÿ bN
��
d 2
y �vN �i�

ÿ
F �N

�
i
,

i � 1, . . . ,2Ny ÿ 1, �37�

where

vi, j � uj�yi, zj �, �p�i� pjy�yi ,

d 2
y �p�i�

ÿ�p�i�1ÿ2�p�i��p�iÿ1�=h 2
y , p � Fj; vj; F0; F1,

ÿ
F �0
�
i
� n0

�
~d
ÿ
b1
�
a0h1d

2
y �F0 �iÿ�F1 �ir

ÿ
b1
�ÿ h1

ÿ
F 01
�
i
~d
ÿ
b1
��
,

ÿ
F �N

�
i
� n1

�
~d
ÿÿ bN

�
aNhNd

2
y �F1 �iÿ�FN �ir

ÿÿ bN
�

� hN
ÿ
F 0N

�
i
~d
ÿÿ bN

��
,

ÿ
F �j
�
i
�
ÿ
Fj

�
i
hj �

ÿ
Fj�1

�
i
hj�1

2h
zxl

j

,

Lyvi, j � ljhj � lj�1hj�1
2h
zxl

j

d 2
y �vj �i,

Lzvi, j �
�
h
zxl

j

�ÿ1�lj�1
hj�1

g
ÿ
bj�1

�
�vi, j�1 ÿ vi, j � ÿ lj

hj
g
ÿÿ bj

�
� �vi, j ÿ vi, jÿ1 �

�
,

h
zxl

j � 0:5
ÿ
hj � hj�1

�
, F 0j � @Fj=@zjz�zj :

The ®ve-point di�erence equations (37) for j �
1, . . . ,Nÿ 1 have only the ®rst order of accuracy in hj:
For the second order accuracy we need to apply nine-
point di�erence equations with
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Lyvi, j � h
zxlÿ1
j

�
lj�1hj�1

�
~d
ÿ
bj�1

�
d 2
y �vj�1 �i

�
�
r
ÿ
bj�1

�ÿ ~d
ÿ
bj�1

��
d 2
y �vj �i

�
� ljhj

�
~d
ÿÿ bj

�
d 2
y �vjÿ1 �i

�
�
r
ÿÿ bj

�ÿ ~d
ÿÿ bj

��
d 2
y �vj �i

��
,

ÿ
F �j
�
i
� h

zxlÿ1
j

�
hj�1

�
~d
ÿ
bj�1

�ÿ
Fj�1

�
i

�
�
r
ÿ
bj�1

�ÿ ~d
ÿ
bj�1

���
F �j

�
i

�
� hj

�
~d
ÿÿ bj

�ÿ
Fjÿ1

�
i

�
�
r
ÿÿ bj

�ÿ ~d
ÿÿ bj

��ÿ
F ÿj

�
i

��
,

where F 2
j � Fjjz�zj20

:

If ek � 0 then g � 1, ~d � 1=6, r � 0:5:
If bk 6�0 then for monotone ®nite-di�erence scheme

(37) the expression ljd 2
y �p� is in the form

gyljd
2
y �p� ÿ bjdy�p�,

where gy�0:5bjhy=ljcth�0:5bjhy=lj �:

Example 5

We assume, in addition, that uk � uk�x, y, z�,
ak 6�0, bk 6�0: Then for the monotone ®nite-di�erence
scheme (37) the expression ljd

2
y �p� is in the form

gxljd
2
x �p� ÿ ajdx�p� � gyljd

2
y �p� ÿ bjdy�p�,

where gx�0:5ajhx=ljcth�0:5ajhx=lj �:
Example 6

For solving the time-depending problem with

uk � uk�z, t�, lk � lk�t�, Fk � Fk�z, t�, dk � dk�t�,
ak � bk � 0, n0 � n1 � 1 the di�erence equations can
be written in the form of (21), where

R0 � ÿh1
�
F1r

ÿ
b1
�� h1F

0
1
~d
ÿ
b1
��� h1d1

��
r
ÿ
b1
�

� a0h1 ~d
ÿ
b1
�
=l1

�
_v1 ÿ a0h1 _F0

~d
ÿ
b1
�
=l1

�
,

RN � ÿ hN

�
FNr

ÿÿ bN
�ÿ hNF

0
N

~d
ÿÿ bN

��
� hNdN

��
r
ÿÿ bN

�� aNhN ~d
ÿÿ bN

�
=lN

�
_vN

ÿ aNhN _F1
~d
ÿÿ bN

�
=lN

�
,

Rj � ÿ
ÿ
Fjhj � Fj�1hj�1

�
=2� 0:5

ÿ
djhj � dj�1hj�1

�
_vj, �38�

_vj � @vj=@ tjz�zj , _Fm � @Fm=@ t, m � 0; 1:

The ®ve-point di�erence equations for j � 1, . . . ,Nÿ 1
have only the ®rst order of accuracy in hj: For the sec-

ond order accuracy we need to apply nine-point di�er-
ence equations with

Rj � ÿ F �j h
zxl

j � dj�1hj�1
�

~d
ÿ
bj�1

�ÿ
_vj�1

�
�
�
r
ÿ
bj�1

�ÿ ~d
ÿ
bj�1

��ÿ
_vj
��� djhj

�
~d
ÿÿ bj

�ÿ
_vjÿ1

�
�
�
r
ÿÿ bj

�ÿ ~d
ÿÿ bj

��ÿ
_vj
��
: �39�

In the case of analytical integration, we can determine
function Fj in the right side from Eqs. (13), (17) and
(19). If the grid is uniform, then di�erence expressions
(37)±(39) may be simplifed. We can obtain the system

of di�erential equations (20), (38), (39), where can be
solved with initial conditions at t � 0 (the so-called
method of lines).
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